EPD Steel/stainless steel doors

Environmental Product Declaration Acc. to ISO 14025 and EN 15804

Steel/stainless steel tubular frame doors with infill panel

Jansen AG CH-9463 Oberriet

model-EPD as a basis for issuing EPDs for door manufacturers in accordance with the scope

SE

Declaration code M-EPD-STÜ-GB-000003

Note: This EPD based on the model-EPD Steel/stainless steel doors

Environmental Product Declaration in accordance with ISO 14025 and EN 15804 Summary

Steel/stainless steel doors

Programme operator	ift Rosenheim GmbH Theodor-Gietl-Strasse 7-9 D-83026 Rosenheim							
Holder of the declaration	Jansen AG Industriestraße 34 CH-9463 Oberriet SG							
Declaration code	M-EPD-STÜ-GB-000003							
Designation of declared product	Steel/stainless steel tubular frame doors with infill pa	inel						
Scope	Steel doors for use in office and administration buildings as							

well as public buildings and for residential applications

LCA results per m ² door without fire resistance		Manufacture A1 – A5	Use B1 – B7	End-of-Life C1 – C4	Recycling potential D
Primary energy – non-renewable (PE _{n renw}) in MJ		1,800.00	B1: 11,500.00 B2-B7: 700.00	32.50	-609.00
Primary energy – renewable (PE _{renw}) in MJ	K A	155.00	B1: 55.40 B2-B7: 38.20 5.		-4.99
Global warming potential (GWP 100) in kg CO ₂ - equiv.	A Planton	107.00	07.00 B1: 700.00 B2-B7: 44.00		-40.20
Ozone depletion potential (ODP) in kg R11 -equiv.		1.04E-06	B1: 1.93E-08 B2-B7: 2.29E-07	1.21E-09	-5.42E-10
Acidification potential (AP) in kg SO ₂ -equiv.		0.60	B1: 0.58 B2-B7: 0.33	0.01	-0.31
Eutrophication potential (EP) in kg PO4 ³⁻ -equiv.		0.05	B1: 0.07 B2-B7: 0.03	9.55E-13	-0.02
Photochemical ozone creation potential (POCP) in kg C_2H_4 -equiv.		0.03	B1: 0.10 B2-B7: 0.02		
Abiotic depletion poten- tial (elements) (ADP _{el.}) in kg Sb-equiv.	SI Ca Para	4.09E-03	B1: 2.72E-05 B2-B7: 1.48E-03	2.40E-07	-1.03E-04
Abiotic depletion poten- tial (fossil) (ADP _{fos}) in MJ	C R Processo	1,800.00	B1: 11,500.00 B2-B7: 700.00	32.40	-609.00
Water consumption in m ³		193.00	B1: 71.70 B2-B7: 43.30	7.20	-5.14

Prof Ulric Sleberath Director of Institute,

ift Rosenheim GmbH Geschäftsführer: Dr. Jochen Peichl Prof. Ulrich Sieberath Dr. Martin H. Spitzner

Patrick Wortner, Dipl.-Ing. (FH) Verifier

Theodor-Gietl-Str. 7 - 9 D-83026 Rosenheim Tel.: +49 (0)8031/261-0 Fax: +49 (0)8031/261-290 www.ift-rosenheim.de Sitz: 83026 Rosenheim AG Traunstein, HRB 14763 Sparkasse Rosenheim Kto. 3822 BLZ 711 500 00

Basis

Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen (Guidance on preparing Type III Environmental Product Declarations).

This Declaration is based on the PCR document "Türen und Tore" (Pedestrian doorsets and industrial, commercial and garage doors and gates) PCR-TT-1.1 : 2011

Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue. The declaration holder assumes full liability for the underlying data, certificates and verifications.

Date created: 01 November 2012

Date of issue: 01 xxx 2013

Next revision: 01 November 2017

LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both the average of the data collected at various manufacturing plants as well as generic data from the "GaBi 5" data base. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc.).

Notes on publication

The "Conditions and Guidance on the Use of ift Test Documents" apply.

Environmental Product Declaration in accordance with ISO 14025 and EN 15804 Summary

Steel/stainless steel doors

LCA results per m ² door with fire resistance		Manufacture A1 – A5	Use B1 – B7	End-of-Life C1 – C4	Recycling potential D
Primary energy – non-renewable (PE _{n renw}) in MJ		2,710.00	B1:11500.00 B2-B7:1600.00	33.10	-576.00
Primary energy – renewable (PE _{renw}) in MJ		193.00	B1:55.40 B2-B7:74.60	5.05	-4.90
Global warming poten- tial (GWP 100) in kg CO ₂ - equiv.		159.00	B1:700.00 B2-B7: 95.00	2.03	-25.80
Ozone depletion poten- tial (ODP) in kg R11 - equiv.	CENTRATION	-5.17E-06	B1: 1.93E-08 B2-B7: -5.93E-06	1.21E-09	-3.32E-10
Acidification potential (AP) in kg SO ₂ -equiv.		0.74	B1: 0.58 B2-B7: 0.47	0.01	-0.29
Eutrophication potential (EP) in kg PO ₄ ³⁻ -equiv.		0.07	B1: 0.07 B2-B7: 0.05	9.96E-04	-0.01
Photochemical ozone creation potential (POCP) in kg C ₂ H ₄ -equiv.		0.03	B1: 1.01E-01 B2-B7: 0.02	-4.80E- 04	-0.03
Abiotic depletion poten- tial (elements) (ADP _{el.}) in kg Sb-equiv.	SICA	3.38E-03	B1: 2.75E-05 B2-B7: 6.63E-04	2.43E-07	-9.12E-05
Abiotic depletion poten- tial (fossil) (ADP _{fos}) in MJ	C. P.	2,700.00	B1: 11500.00 B2-B7: 1600.00	33.00	-576.00
Water consumption in m ³		172.00	B1:71.7 B2-B7:21.9	7.23	-5.53

Basis

- EN ISO 14025:2011
- EN 15804:2012

Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen (Guidance on preparing

Type III Environmental Product Declarations).

This Declaration is based on the PCR document "Türen und Tore" (Pedestrian doorsets and industrial, commercial and garage doors and gates) PCR-TT-1.1 : 2011

Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue. The declaration holder assumes full liability for the underlying data, certificates and verifications.

Date created: 01 November 2012

Date of issue: 01 xxx 2013

Next revision: 01 November 2017

LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both the average of the data collected at various manufacturing plants as well as generic data from the "GaBi 5" data base. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc.).

Notes on publication

The "Conditions and Guidance on the Use of **ift** Test Documents" apply.

ift Rosenheim GmbH Geschäftsführer: Dr. Jochen Peichl Prof. Ulrich Sieberath Dr. Martin H. Spitzner Theodor-Gietl-Str. 7 - 9 D-83026 Rosenheim Tel.: +49 (0)8031/261-0 Fax: +49 (0)8031/261-290 www.ift-rosenheim.de

Verifier

Sitz: 83026 Rosenheim AG Traunstein, HRB 14763 Sparkasse Rosenheim Kto. 3822 BLZ 711 500 00

Patrick Wortner, Dipl.-Ing. (FH)

Environmental Product Declaration in accordance with ISO 14025 and EN 15804 Long Version

Steel/stainless steel doors

1 Product definition

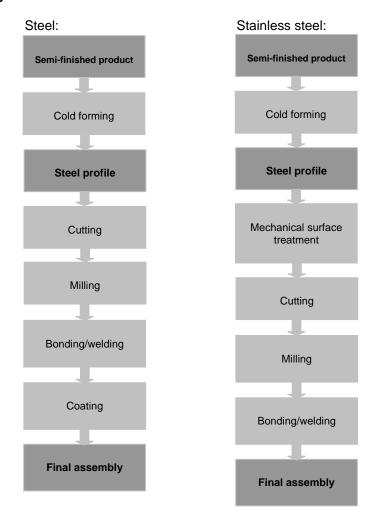
Product definition This EPD applies to steel/stainless steel tubular frame doors with transparent and/or opaque infill panels as per EN 14351-1 and prEN 14351-2 regardless of their dimensions a well as to fire resistant doors as per prEN 16034. LCA calculations were based on the standard dimensions of 1.23 m x 2.18 m as defined in EN 14351-1.

Product description: Profile system	Steel profile with or without thermal break, fire resistant doors including inserts and rebate insulation made from any material; Total installation depth 50 – 120 mm (depth of frame member plus case- ment/sash overlap).
System supplier/licensor r	Forster Rohr- & Profiltechnik AG, Jansen AG and RP Technik GmbH Pro- filsysteme.
Type of opening / opening direc- tion	All types of openings incl. fixed/inactive leaves
Frame material	Steel/stainless steel with and without thermal break made of polyamide, poly- propylene, ABS, GRP / stainless steel
Overall dimensions of frame member	Regardless of dimensions
Rebate design Rebate seal/gasket Centre/ internal	Seal/gasket made of EPDM or CR or TPE or TPV or silicone
External	Seal/gasket made of EPDM or CR or TPE or TPV or silicone

Product group: doors Declaration code: M-EPD-S	STÜ-GB-000003	Date created: 01 November 2012 Next revision: 01 November 2017						
	Surface coating							
	Туре	Powder coated, wet paint, mechanical						
		surface treatment, anodic oxidation						
	Infill panel							
	Туре	Single glass or insulating glass unit						
		- double or triple – in accordance with						
		EPD for insulating glass units , TSG/LSG						
		in accordance with EPD for float						
		glass/TSG/LSG or opaque infill panels,						
		respectively.						
		Fire resistant doors require fire resistant						
		glass units for classes E/EW/EI (G/-/F/T).						
	Additional information for the arcl	nitect:						
	 Face width of frame appreciation 	prox. 40 mm to 160 mm						
	lap seal/gasket if applic	able, additional external seal/gasket possi-						
	In addition observe the system de	escriptions provided by the manufacturer.						
in accordance with EPD for floa glass/TSG/LSG or opaque infill respectively. Fire resistant doors require fire glass units for classes E/EW/EI Additional information for the architect: - Face width of frame approx. 40 mm to 160 mm - Seal/gasket: internal and external rebate seal/gasket, inte lap seal/gasket if applicable, additional external seal/gask ble, drop seal if applicable In addition observe the system descriptions provided by the manufa Application Steel doors as per EN 14351-1 and prEN 14351-2 for use in reside non-residential buildings, as well as fire resistant doors as per prEN Quality assurance (optional) No quality assurance verified. Alternatively: The following verifications are held: - Performance characteristics as per EN 14351-1								
Quality assurance	No quality assurance verified.							
(optional)	Alternatively: The following verif	ications are held:						
	Performance characteris	tics as per EN 14351-1						
	Quality assurance accord	ling to RAL-GZ 695						
Additional Information	For detailed structural characteris documents accompanying the pro							

2 Materials used

2.1 Primary products


Primary products The primary products used are listed in the LCA (see Section 7).

2.2 Declarable substances

Declarable substances In accordance with the REACH candidate list, no substances of very high concern are contained.

3 Product stage

Product manufacture

4 Construction process stage

Processing recommendations, installation Planning and execution/details of assembly/installation are state-of-the art (e. g. in accordance with RAL- Leitfaden zur Planung und Ausführung der Montage von Fenstern und Haustüren [RAL-Guide to planning and installation of windows and entry doors]). Observe the information and recommendations given in the system descriptions/accompanying documents provided by the manufacturer.

5 Use stage

Emissions to the envi-No emissions to indoor air, water and soil known. ronment

Product group: doors
Declaration code: M-EPD-STÜ-GB-000003

Date created: 01 November 2012 Next revision: 01 November 2017

Page 4

Reference service life (RSL) A reference service life of 50 years as per table "Nutzungsdauer von Bauteilen" (service life of building components) from the information platform "Nachhaltiges Bauen – Baustoff- und Gebäudedaten – mittlerer Wert" (sustainable construction - building materials and building data) (mean value) has been specified for steel doors. Here the following applies: "The data sets of the given table cannot include all the different influential factors relevant to the replacement cycles of building components (built conditions, climatic influences, wear, maintenance concepts, etc.). Neither can all the different building component variants and grades/properties, e.g. anodised film thicknesses, etc. be shown in detail. No sufficient data are available yet in some instances, and extreme differentiation would counteract the goal of an applicable table to be used without too much effort." For the reference service life the following characteristics apply:

- Declared product characteristics: refer to product definition
- Application parameters for the construction: refer to processing recommendations, additional information
- Expected quality of workmanship: refer to processing recommendations, application
- External conditions: no impacts are known that could have a negative effect on the reference service life
- Internal conditions: no impacts are known that could have a negative effect on the reference service life
- Conditions of use: refer to Annex scenarios The reference service life solely applies to the specified conditions of use
- Maintenance: refer to scenario B2

The service life solely applies to the characteristics specified in this EPD or corresponding references, respectively.

6 End-of-life stage

Possible end-of-life
stagesThe steel components of the door leaf and door frame are processed at
central collection points and then recycled. Glass is recycled as well. Resid-
ual fractions are thermally recycled.

Disposal routes The LCA includes the average disposal routes.

All life cycle scenarios are detailed in the Annex.

7 Life Cycle Assessment (LCA)

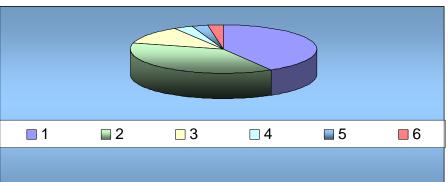
Environmental product declarations are based on life cycle analyses (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

As the basis for this, an LCA was prepared for steel doors. The LCA was developed in accordance with EN 15804 and the requirements set out by the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

7.1 Definition of goal and scope

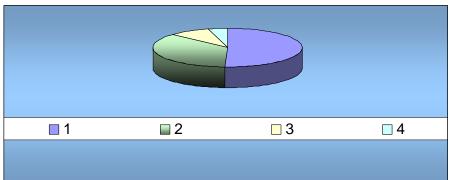
7.1 Definition of go	bal and scope
Goal	 The goal of the LCA is to demonstrate the environmental impacts of steel doors. As set out by EN 15804 the environmental impacts covered by the Environmental Product Declaration are presented in the form of basic information. The specified environmental impacts are as follows: Primary energy demand (renewable and non-renewable) Global Warming Potential (GWP) Acidification Potential (AP) Ozone depletion potential (ODP) Eutrophication Potential (EP) Photochemical Ozone Creation Potential (POCP) Abiotic Depletion Potential fossil (ADP_{elements}) Abiotic Depletion Potential fossil (ADP_{fossil}) Water consumption (WD)
	They are specified for the entire life cycle of 1 m ² steel/stainless steel tubu- lar frame door. Apart from these no other environmental impacts have been specified/presented.
Data quality and data availability	The base data are based on data collected at various manufacturer plants. They represent the typical data of this industry. The values were averaged on the basis of weighted production volumes. The glass data originate from the EPDs for float glass/TSG/LSG or the EPD for insulating glass units, respectively. The data used are less than 5 years old. The life cycle to illustrate the production and recycling of steel windows was modelled using the sustainability software tool "GaBi 5", developed by PE INTERNATIONAL GmbH. All background data sets relevant to window pro- duction originate from the database of the GaBi 5 software.
Geographical and time- related system boundaries	The data used for the essential parts of this LCA originate mainly from the years 2011 and 2012 and refer only to Europe as the geographical area. The energy used is based on European electricity mix.
	Raw materials are modelled as generic data.
Scope and system boundaries	The Life Cycle Analysis for steel doors covers all life cycle stages (cradle to grave), i.e. manufacture, use and end-of-life.
Cut-off criteria	All data from the company data collected i.e. all commodities/input and raw materials used, the thermal energy used as well as electricity consumption were taken into consideration. The boundaries cover only the production-relevant data. Building sections/parts of facilities that are not relevant to the manufacture of the product were excluded. The transport distances of primary materials are included as generic values. It can be assumed that the total of negligible processes per life cycle stage does not exceed 5 percent. The life cycle calculation also includes material and energy flows that account for less than 1 percent.


Next revision: 01 November 2012

7.2 Inventory analysis

•••	
Goal	All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the de- clared/functional units.
	The models of the unit processes used for the LCA have been documented in a transparent manner.
Life cycle stages	The Annex depicts the entire life cycle of tubular frame doors as follows: product stage A1-A3, construction process stage A4-A5, use stage B1 - B7, end-of-life stage C1 - C4 and benefits and loads beyond the system boundaries D.
Benefits	The following benefits have been defined as per EN 15804:
	Benefits from recycling
	Benefits (thermal and electrical) from incineration
Allocation procedures Allocation of Co- products	Allocations do not need to be performed for the production of tubular frame doors.
Allocations for re-use and recycling	If steel doors are re-used/recycled in the manufacturing process (rejects) they are shredded and then sorted into their original pure components as necessary. This is realised by different process plants e.g. magnetic separators.
Allocations based on life cycle boundaries	Use of recycled materials in the manufacturing process was based on the current market-specific situation. In parallel to this, a recycling potential was taken into consideration that reflects the economic value of the product after recycling (recyclate). The system boundary set for the recycled material refers to collection.
Secondary materials	Secondary materials were included in the benefits.
	Open loop (waste recycled into new products)
Inputs	The LCA includes the production-relevant inputs per m ² door/fire resistant door given below. Unless presented separately, the depicted data also apply to fire resistant doors.
	Energy:
	The electricity mix is based on "Strommix Europa" (European electricity
	mix). Gas is based on "Erdgas Europa" (European natural gas).
	Water:
	The water consumed by the individual process steps for the manufacture of doors amounts to a total of 0.4 l per m ² door.

Date created: 01 November 2012 Next revision: 01 November 2017


Raw material/primary materials:

No.	Material	Mass in %
1	Glass/fire resistant glass	41.3%
2	Steel profile	37.9%
3	Plaster/insulating material	11.7%
4	Thermal insulation	3.4%
5	Hardware	2.7%
6	Other materials	2.8%

Ancillary materials:

The following amount of ancillary materials is required for 1 $m^2\,$ door - share in % is given below:

No	Material	Mass in %
•		
1	Welding wire	50.4 %
2	Cleaning agent	36.5 %
3	Lubricants	9.0 %
4	Other	4.1 %

Outputs

Generated waste:

Refer to Section 7.3 - Impact assessment

Waste water:

0.4 I waste water is produced during the manufacture of doors.

Date created: 01 November 2012 Next revision: 01 November 2017

7.3 Impact assessment

Goal

Impact assessment covers inputs and outputs. The impact categories applied are set out below:

	11.14				D/	Do	Do	D (Do	5-	04	00	00	0.1	5
LCA results per m ² steel door without fire resistance	Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Environmental impacts																
Global warming potential (GWP 100)	kg CO ₂ -equiv.	104.00	3.16	-	700.00	2.65	42.10	-	-	-	-	-	0.62	1.37	-	-40.20
Ozone depletion potential (ODP)	kg R11-equiv.	1.04E-06	5.52E-11	-	1.93E-08	1.26E-09	2.27E-07	-	-	-	-	-	1.08E-11	1.20E-09	-	-5.42E-10
Acidification potential of soil and water (AP)	kg SO ₂ -equiv.	0.59	0.01	-	0.58	7.94E-03	0.32	-	-	-	-	-	2.67E-03	7.77E-03	-	-0.31
Eutrophication potential(EP)	kg PO4 ³⁻ -equiv.	0.05	3.10E-03	-	0.07	1.25E-03	0.03	-	-	-	-	-	6.11E-04	3.44E-04	-	-0.02
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	0.04	-4.31E-03	-	0.10	7.03E-04	0.02	-	-	-	-	-	-8.57E-04	4.31E-04	-	-0.03
Abiotic depletion potential - non-fossil resources (ADP - elements)	kg Sb-equiv.	4.09E-03	1.18E-07	-	2.72E-05	2.07E-05	1.46E-03	-	-	-	-	-	2.31E-08	2.17E-07	-	-1.03E-04
Abiotic depletion potential - fossil resources (ADP – fossil fuels)	MJ	1,750.00	43.80	-	11,500.00	45.60	703.00	-	-	-	-	-	8.57	23.80	-	-609.00
Use of resources	Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	154.00	1.72	-	55.40	4.78	33.40	-	-	-	-	-	0.34	4.68	-	-4.99
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of non-renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	1,760.00	43.80	-	1,150.00	45.70	705.00	-	-	-	-	-	8.57	23.90	-	-609.00
Use of secondary materials	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of renewable secondary fuels	MJ	1.36E-05	2.77E-04	-	0.11	3.71E-03	7.59E-03	-	-	-	-	-	5.41E-05	5.48E-04	-	0.41
Use of non-renewable secondary fuels	MJ	-8.49E-04	2.90E-03	-	1.13	0.04	0.08	-	-	-	-	-	5.67E-04	5.74E-03	-	4.32
Use of net fresh water	m³	193.00	0.17	-	71.70	5.64	37.60	-	-	-	-	-	0.03	7.17	-	-5.14

LCA results per m ² steel door without fire resistance	Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Waste categories																
Hazardous waste disposed	kg	0,05	-	-	-	-	0,07	-	-	-	-	-	-	-	-	-
Non hazardous waste disposed	kg	303,00	0,16	-	78,90	8,78	111,00	-	-	-	-	-	0,03	13,80	-	-221,00
Radioactive waste disposed	kg	0,09	6,08E-05	-	0,05	3,40E-03	0,02	-	-	-	-	-	1,19E-05	3,48E-03	-	1,36E-04
Output material flows	Unit	A1 – A3	A4	A5	B1	B2	B 3	B4	B5	B 6	B7	C1	C2	C3	C4	D
Components for re-use	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Materials for recycling	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Materials for energy recovery	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Exported energy	MJ															

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

LCA results per m ² fire resistant door	Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
Environmental impacts																
Global warming potential (GWP 100)	kg CO ₂ -equiv.	156,00	3,37	-	700,00	2,65	92,70	-	-	-	-	-	0,66	1,37	-	-25,80
Ozone depletion potential (ODP)	kg R11-equiv.	-5,17E-06	5,88E-11	-	1,93E-08	1,26E-09	-5,97E-06	-	-	-	-	-	1,15E-11	1,20E-09	-	-3,32E-10
Acidification potential of soil and water (AP)	kg SO ₂ -equiv.	0,73	0,01	-	0,58	7,94E-03	0,46	-	-	-	-	-	2,84E-03	7,80E-03	-	-0,29
Eutrophication potential(EP)	kg PO ₄ ³⁻ -equiv.	0,06	3,30E-03	-	0,07	1,25E-03	0,05	-	-	-	-	-	6,51E-04	3,45E-04	-	-0,01
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	0,04	-4,60E-03	-	0,10	7,03E-04	0,02	-	-	-	-	-	-9,12E-04	4,32E-04	-	-0,03
Abiotic depletion potential - non-fossil resources	kg Sb-equiv.	3,38E-03	1,25E-07	-	2,72E-05	2,07E-05	6,43E-04	-	-	-	-	-	2,46E-08	2,18E-07	-	-9,12E-05
Abiotic depletion potential - fossil resources	MJ	2.660,00	46,60	-	11.500,00	45,60	1.580,00	-	-	-	-	-	9,13	23,90	-	-576,00
Use of resources	Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	192,00	1,83	-	55,40	4,78	70,00	-	-	-	-	-	0,36	4,69	-	-4,90
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of non-renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	2.670,00	46,60	-	11.500,00	45,70	1.590,00	-	-	-	-	-	9,13	24,00	-	-576,00
Use of secondary materials	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Use of renewable secondary fuels	MJ	-	2,95E-04	-	0,12	3,71E-03	0,14	-	-	-	-	-	5,77E-05	5,50E-04	-	0,42
Use of non-renewable secondary fuels	MJ	-8,86E-04	3,08E-03	-	1,13	0,04	0,13	-	-	-	-	-	6,04E-04	5,76E-03	-	4,34
Use of net fresh water	m ³	172,00	0,18	-	71,70	5,64	16,30	-	-	-	-	-	0,04	7,19	-	-5,53

Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C 4	D
kg	0,05	-	-	-	-	0,06	-	-	-	-	-	-	-	-	-
kg	361,00	0,17	-	78,90	8,78	166,00	-	-	-	-	-	0,03	19,90	-	-215,00
kg	0,18	6,48E-05	-	0,05	3,40E-03	0,11	-	-	-	-	-	1,27E-05	3,49E-03	-	1,59E-04
Unit	A1 – A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	kg kg kg Unit kg kg kg	kg 0,05 kg 361,00 kg 0,18 Unit A1 – A3 kg - kg - kg -	kg 0,05 - kg 361,00 0,17 kg 0,18 6,48E-05 Unit A1 – A3 A4 kg - - kg - - kg - - kg - - kg - -	kg 0,05 - - kg 361,00 0,17 - kg 0,18 6,48E-05 - Unit A1 – A3 A4 A5 kg - - - kg - - - kg - - - kg - - -	kg 0,05 - - kg 361,00 0,17 - 78,90 kg 0,18 6,48E-05 - 0,05 Unit A1 – A3 A4 A5 B1 kg - - - - kg - - - - kg - - - - kg - - - -	kg 0,05 - - - kg 361,00 0,17 - 78,90 8,78 kg 0,18 6,48E-05 - 0,05 3,40E-03 Unit A1 – A3 A4 A5 B1 B2 kg - - - - kg - - - - kg - - - - kg - - - -	kg 0,05 - - - 0,06 kg 361,00 0,17 - 78,90 8,78 166,00 kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 Unit A1 – A3 A4 A5 B1 B2 B3 kg - - - - - - kg - - - - - - kg - - - - - -	kg 0,05 - - - 0,06 - kg 361,00 0,17 - 78,90 8,78 166,00 - kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 - Unit A1 – A3 A4 A5 B1 B2 B3 B4 kg - - - - - - - kg - - - - - - - - kg - - - - - - - -	kg 0,05 - - - 0,06 - - kg 361,00 0,17 - 78,90 8,78 166,00 - - kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 - - Unit A1 – A3 A4 A5 B1 B2 B3 B4 B5 kg - - - - - - - - kg - - - - - - - - kg - - - - - - - -	kg 0,05 - - - 0,06 - - - kg 361,00 0,17 - 78,90 8,78 166,00 - - - kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 - - - Unit A1 – A3 A4 A5 B1 B2 B3 B4 B5 B6 kg - <td< td=""><td>kg 0,05 - - - 0,06 - - - - kg 361,00 0,17 - 78,90 8,78 166,00 - - - - kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 - - - - Unit A1 – A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 kg - <t< td=""><td>kg 0,05 - - - 0,06 -<</td><td>kg 0,05 - - 0,06 - 0,03 3 3 166,00 - - - - - 0,03 3 3 166,00 - - - - 1,27E-05 3 3 3 4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C1</td><td>kg 0,05 - - - 0,06 -<</td><td>kg 0,05 - - - 0,06 -<</td></t<></td></td<>	kg 0,05 - - - 0,06 - - - - kg 361,00 0,17 - 78,90 8,78 166,00 - - - - kg 0,18 6,48E-05 - 0,05 3,40E-03 0,11 - - - - Unit A1 – A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 kg - <t< td=""><td>kg 0,05 - - - 0,06 -<</td><td>kg 0,05 - - 0,06 - 0,03 3 3 166,00 - - - - - 0,03 3 3 166,00 - - - - 1,27E-05 3 3 3 4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C1</td><td>kg 0,05 - - - 0,06 -<</td><td>kg 0,05 - - - 0,06 -<</td></t<>	kg 0,05 - - - 0,06 -<	kg 0,05 - - 0,06 - 0,03 3 3 166,00 - - - - - 0,03 3 3 166,00 - - - - 1,27E-05 3 3 3 4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C1	kg 0,05 - - - 0,06 -<	kg 0,05 - - - 0,06 -<

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

Date created: 01 November 2012 Next revision: 01 November 2017

7.4 Interpretation, LCA presentation and critical verification

Interpretation	The environmental impacts presented here are suitable for the certifi- cation of buildings.
Report	The LCA report was prepared in accordance with the requirements of EN ISO 14040, EN ISO 14044, EN 15804 and EN ISO 14025.
	The results of the study are not designed to be used for comparative state- ments intended for publication.
	The results and conclusions reported to the target group are complete, cor- rect, without bias and transparent.
	The report is not addressed to third parties due to confidential information contained in the report.
Critical verification	The LCA was critically verified by Mr Patrick Wortner, independent ift veri- fier.

8 General information regarding the EPD

Comparability	This EPD was prepared in accordance with EN 15804 and is therefore only comparable to those EPDs that that also comply with EN 15804.					
	For a comparison of EPDs for construction products the rules as per EN 15804 (Clause 5.3) apply.					
Communication	The communications format of this EPD meets the requirements of EN 15942:2011 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to EN 15804.					
Verification	Verification of the Environmental Product Declaration is documented in ac- cordance with the ift guidline "Richtlinie zur Erstellung von Typ III Umwelt- produktdeklarationen" (Guidance on preparing Type III Environmental Prod- uct Declarations) in accordance with the requirements set out by EN ISO 14025.					

This Declaration is based on the **ift** PCR document "Türen und Tore" (Pedestrian doorsets and industrial, commercial and garage doors and gates): PCR-TT-1.1 : 2011

The European standard EN 15804 serves as the core PCR ^a .					
Independent verification of the declaration according to EN ISO 14025:2010 internal cxternal					
Independent third party verifier Patrick Wortner					
^a Product category rules					

Bibliography:		
Standards and legislation	[1]	Ökologische Bilanzierung von Baustoffen und Gebäuden - Wege zu einer ganzheitlichen Bilanzierung (LCA of building materials and buildings - Routes to an LCA). Hrsg./Published by: Eyerer, P.; Reinhardt, HW. Birkhäuser Verlag, Basel, 2000
	[2]	Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building). Hrsg./Published by: Bundesministerium für Verkehr, Bau- und Wohnungswesen (Federal Ministry of Transport, Building and Housing). Berlin, 2011
	[3]	GaBi 5: Software und Datenbank zur Ganzheitlichen Bilanzierung (Software and database for LCA). Hrsg./Published by: IKP Universität Stuttgart and PE Europe GmbH. Leinfelden-Echterdingen, 1992-2012
	[4]	Klöpffer, W.; Grahl. B.: Ökobilanzen (LCAs). Wiley-VCH-Verlag, Weinheim, 2009
	[5]	EN ISO 14025:2011-10 Umweltkennzeichnungen und -deklarationen Typ III Umweltdeklarationen – Grundsätze und Verfahren. (Environmental labels and declarations - Type III environmental declarations – Principles and procedures) Beuth Verlag GmbH, Berlin
	[6]	EN ISO 14040:2009-11 Environmental management - Life cycle assessment - Principles and framework. Beuth Verlag GmbH, Berlin
	[7]	EN ISO 14044:2006-10 Environmental management - Life cycle assessment - Requirements and guidelines. Beuth Verlag GmbH, Berlin
	[8]	EN 15804:2012 Sustainability of construction works – Environmental product declaration – Rules for the product categories. Beuth Verlag GmbH, Berlin
	[9]	ISO 21930:2007-10 Sustainability in building construction - Environmental declaration of building products Beuth Verlag GmbH, Berlin
	[10]	prEN 16034:2010-01 Pedestrian doorsets, industrial, commercial, garage doors and windows - Product standard, performance characteristics – Fire resistance and/or smoke control characteristics. Beuth Verlag GmbH, Berlin
	[11]	EN 12457-1:2003-01 Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1: One stage batch test at a liquid to solid ratio of 2 l/kg and with particle size below 4 mm (without or with size reduction) Beuth Verlag GmbH, Berlin

- [12] EN 12457-2:2003-01
 - Characterization of waste Leaching; Compliance test for leaching of granular waste materials and sludges Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg and with particle size below 4 mm (without or with size reduction) Beuth Verlag GmbH, Berlin
- [13] EN 12457-3:2003-01

Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 3: Two stage batch test at a liquid to solid ratio of 2 l/kg and 8 l/kg for materials with high solid content with particle size below 4 mm (without or with size reduction). Beuth Verlag GmbH, Berlin

[14] EN 12457-4:2003-01

Characterization of waste - Leaching; Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg and with particle size below 10 mm (without or with size reduction) Beuth Verlag GmbH, Berlin

- [15] EN 13501-1:2010-01
 Fire classification of construction products and building elements -Part 1: Classification using data from reaction to fire tests Beuth Verlag GmbH, Berlin
- [16] EN 14351-1:2010-08 Windows and doors - Product standard, performance characteristics -Part 1: Windows and external pedestrian doorsets without resistance to fire and/or smoke leakage characteristics Beuth Verlag GmbH, Berlin
- [17] EN 13830:2003-11 Curtain walling - Product standard. Beuth Verlag GmbH, Berlin
- [18] DIN 4102-1:1998-05
 Fire behaviour of building materials and building components Part 1: building materials, concepts, requirements and tests.
 Beuth Verlag GmbH, Berlin
- [19] CEN/TS 14405:2004-09 Characterization of waste - Leaching behaviour tests - Up-flow percolation test (under specified conditions). Beuth Verlag GmbH, Berlin
- [20] EN ISO 9001:2008-12
 Quality management systems Requirements.
 Beuth Verlag GmbH, Berlin
- [21] EN ISO 14001:2004 + Cor. 1:2009
 Environmental management systems Requirements with guidance for use.
 Beuth Verlag GmbH, Berlin
- [22] VDI 2243:2002-07 Recycling-oriented product development. Beuth Verlag GmbH, Berlin
- [23] RAL-GZ 695:2010-05 Fenster, Haustüren, Fassaden und Wintergärten - Gütesicherung (Windows, entry doors, facades and conservatories - Quality assurance). Beuth Verlag GmbH, Berlin

- Date created: 01 November 2012 Next revision: 01 November 2017
- [24] Commission Directive 2009/2/EC
 - amending, for the purpose of its adaptation to technical progress, for the 31st time, Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances (15 January 2009)
- [25] ift-Guideline NA-01/1 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen.(Guidance on preparing Type III Environmental Product Declarations). ift Rosenheim, September 2010
- [26] Arbeitsschutzgesetz ArbSchG (Safety at Work Law) Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit, (Law on the implementation of occupational health and safety measures to improve the safety and health protection of employees at work), 5 February 2009 (BGBI. I S. 160, 270)
- [27] Bundesimmissionsschutzgesetz BlmSchG (Federal Immission Law) Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen, (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes), 26 September 2002 (BGBI. I S. 3830)
- [28] Chemikaliengesetz ChemG (Chemicals Act) Gesetz zum Schutz vor gefährlichen Stoffen (Law on Protection against hazardous substances) Subdivided into Chemicals Law and a series of regulations; of relevance here: Gesetz zum Schutz vor gefährlichen Stoffen (Law on Protection against hazardous substances), 2 July 2008 (BGBI. I S.1146)
- [29] Chemikalien-Verbotsverordnung ChemVerbotsV (Chemicals Prohibition Regulation) Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz, (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law), 21 July 2008 (BGBI. I S. 1328)
- [30] Gefahrstoffverordnung GefStoffV (Hazardous substances regulation) Verordnung zum Schutz vor Gefahrstoffen, (Regulation on protection against hazardous substances), 23 December 2004 (BGBI. I S. 3758)
- [31] Federal Environmental Agency, AgBB Ausschuss zur gesundheitlichen Bewertung von Bauprodukten (Committee for Healthrelated Evaluation of Building Products): "AgBB – Bewertungsschema für VOC aus Bauprodukten" (Evaluation of VOC emissions from building products). Dessau-Roßlau, May 2010
- [32] ift Rosenheim: "PCR Türen und Tore" (PCR Pedestrian doorsets and industrial, commercial and garage doors and gates): Product Category Rules as per ISO 14025 and EN 15804. Rosenheim, December 2010
- [33] EPDs für transparente Bauelemente (EPDs for transparent building components) research project **ift** Rosenheim, 2011

- [34] Forschungsvorhaben "Untersuchung der Emissionen von Fenstern und Außentüren zur Bewertung des Verhaltens von Bauelementen in Bezug auf Hygiene, Umweltschutz und Gesundheit", (Research project "Analysis of emissions from windows and exterior doors for the evaluation of building products and their behaviour in terms of hygiene, environmental protection and health) ift Rosenheim, Hochschule Rosenheim, 2011
- [35] ECHA: "Candidate List of Substances of Very High Concern for authorisation", Helsinki, 2011.

Date created: 01 November 2012 Next revision: 01 November 2017

Annex: Description of life cycle scenarios for doors

Pro	duct s	tage	str tic	on cess		Use stage End-of-I												Benefits and loads beyond the systems boundaries
A1	A2	A3	A4	A5	B1	B2	B3	В4	В5	B6	B7		C1	C2	C3	C4		D
Raw material supply	Transport	Manufacturing	Transport	Construction / Installation	Use	Maintenance	Repair	Replacement	Modification/refurbishment	Operational energy use	Operational water use		De-construction	Transport	Waste management	Disposal		Re-use Recovery Recycling potential

Calculation of the scenarios was based on a service life of 50 years (in accordance with the table "Nutzungsdauer von Bauteilen" [service life of building components] of the information portal "Nachhaltiges Bauen – Baustoff- und Gebäudedaten – 'mittlerer Wert'") (Sustainable construction - data of building materials and buildings - "average value).

Furthermore, the scenarios of the research project "EPDs für transparente Bauelemente (EPDs for transparent building components) were used [33].

A4 Transport

Page 19

No.	Scenario	Description
A4.1	Small batches Direct sales	7.5 t truck, 20 % capacity used, approx. 50 km to con- struction site and empty return trip
A4.2	Small batches through local manufacturers	7.5 t truck, capacity fully used, approx. 50 km distance and 7.5 t truck, 20 % capacity used, 50 km distance and empty return trip.
A4.3	Small batches through distributors	40 t truck, capacity fully used, approx. 150 km dis- tance and 7.5 t truck, 20 % capacity used, 50 km dis- tance and empty return trip
A4.4	Large-scale project	40 t truck, capacity fully used (across Germany), approx. 150 km

Average weight per m² steel door: 48.5 kg

A4 Transport from production site/gate to construction site	Unit	A4.1	A4.2	A4.3	A4.4
Global warming potential (GWP 100)	kg CO ₂ -equiv.	3.17	1.26	3.37	0.21
Ozone depletion potential (ODP)	kg R11-equiv.	1.78E-09	4.66E-10	5.88E-11	7.94E-11
Acidification potential (AP)	kg SO ₂ -equiv.	0.01	5.33E-03	0.01	9.44E-04
Eutrophication potential (EP)	kg PO4 ³ -equiv	3.09E-03	1.22E-03	3.30E-03	2.17E-04
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	-	-	-4.60E-03	-
Abiotic depletion potential elements (ADP _{el.})	kg Sb-equiv.	1.25E-07	4.96E-08	1.25E-07	8.45E-09
Abiotic depletion potential fossil (ADP _{fos})	MJ	43.79	17.37	46.60	2.96
Use of resources					
Use of renewable primary energy - excluding renew- able primary energy resources used as raw materials	MJ	1.72	0.68	1.83	0.12
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-
Total use of renewable primary energy resources (primary energy and renewable primary energy re- sources used as raw materials) (energy + material use)	MJ	1.72	0.68	1.83	0.12
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw ma- terials	MJ	47.14	18.70	44.77	3.18
Use of non-renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	48.86	19.38	46.60	3.30
Use of secondary materials	kg	-	-	-	-
Use of renewable secondary fuels	MJ	2.78E-04	1.1E-04	2.95E-04	1.88E-05
Use of non-renewable secondary fuels	MJ	2.91E-04	1.15E-03	3.08E-03	1.96E-04
Use of net fresh water	m ³	0.17	0.07	0.18	0.01

EPD Steel/stainless steel doors

Product group: doors Declaration code: M-EPD-STÜ-GB-000003 Date created: 01 November 2012 Next revision: 01 November 2017

A4 Transport	Unit	A4.1	A4.2	A4.3	A4.4
Waste categories					
Hazardous waste disposed	kg	0.16	0.06	0.17	0.01
Non hazardous waste disposed	kg	6.1E-05	2.42E-05	6.2E-05	4.3E-06
Radioactive waste disposed	kg	0.16	0.06	0.17	0.01
Output material flows					
Components for re-use	kg	-	-	-	-
Materials for recycling	kg	-	-	-	-
Materials for energy recovery	kg	-	-	-	-
Exported energy	MJ	-	-	-	-

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

A5 Construction/Installation

No.	Scenario	Description								
A5.1	Manually	The door is installed without the use of additional lifting de- vices or tools.								
A5.2	Small lifting trolley/lifting platform	A small lifting platform/lifting trolley is required for the installation of the elements.								
A5.3	Crane	The installation of the elements requires a crane.								

Installation of the door forms part of the site management and is covered at the building level.

B 1 Use

See Section 5 Emissions to the environment

B1.1 Use of space heat

No.	Scenario	Description					
B1.1.1	Standard	U_D=1.8; g=0.6; τ_V =0.8 for a period of 50 years					
B1.1.2	Improved thermal insulation	$U_{\text{D}}\text{=}1.5;$ g=0.6; $\tau_{\text{V}}\text{=}0.7$ for a period of 50 years					
B1.1.3	High-performance thermal insulation	$U_{\text{D}}\text{=}1.2;$ g=0.6; $\tau_{\text{V}}\text{=}0.7$ for a period of 50 years					
B1.1.4	Opaque infill panel	$U_D=1.2$; g=0.0; $\tau_V=0.0$ for a period of 50 years					

* As a rule solar control glazing is used for thermal insulation in summer and/or in order to reduce or avoid using energy for air-conditioning. These effects cannot be taken into consideration when evaluating only the space heat demand.

B1.1 Use of space heat	Unit	B1.1.1	B1.1.2	B1.1.3	B1.1.4
Global warming potential (GWP 100)	kg CO ₂ -equiv.	899.30	700.00	599.50	854.30
Ozone depletion potential (ODP)	kg R11-equiv.	1.54E-06	1.93E-08	1.03E-06	1.46E-07
Acidification potential (AP)	kg SO ₂ -equiv.	0.70	0.58	0.47	0.67
Eutrophication potential (EP)	kg PO4 ³⁻ -equiv.	0.09	0.07	0.06	0.08
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	0.13	0.10	0.08	0.11
Abiotic depletion potential elements (ADP _{el.})	kg Sb-equiv.	3.20E-05	2.72E-05	2.14E-05	3.05E-05
Abiotic depletion potential fossil (ADP _{fos})	MJ	14,567.00	11,500.00	9,712.00	13,838.00
Use of resources					-
Use of renewable primary energy - exclud- ing renewable primary energy resources used as raw materials	MJ	64.10	55.40	42.70	60.80
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	64.10	55.40	42.70	60.80
Use of non-renewable primary energy ex- cluding non-renewable primary energy resources used as raw materials	MJ	16,292.00	11,444.60	10,861.00	15,475.00
Use of non-renewable primary energy re- sources used as raw material (material use)	MJ	-	-	-	-
Total use of non-renewable primary energy resources (primary energy and non- renewable primary energy resources used as raw materials) (energy + material use)	MJ	16,292.00	11,444.60	10,861.00	15,475.00
Use of secondary materials	kg	-	-	-	-
Use of renewable secondary fuels	MJ	0.13	0.108	0.09	0.12
Use of non-renewable secondary fuels	MJ	1.36	1.13	0.91	1.29
Use of net fresh water	m³	111.80	71.70	74.50	30.50

Date created: 01 November 2012 Next revision: 01 November 2017

B1.1 Use of space heat	Unit	B1.1.1	B1.1.2	B1.1.3	B1.1.4
Waste categories					
Hazardous waste disposed	kg	-	-	-	-
Non hazardous waste disposed	kg	95.20	79.40	63.50	90.50
Radioactive waste disposed	kg	0.10	-	-	0.10
Output material flows					
Components for re-use	kg	-	-	-	-
Materials for recycling	kg	-	-	-	-
Materials for energy recovery	kg	-	-	-	-
Exported energy	MJ	-	-	-	-

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

B2 Maintenance

B 2.1 Cleaning

No.	Scenario	Description
B2.1.1	Rarely manually	Less than 2.5 m in height or industrial climber, manu- ally using suitable cleaning agents - annually
B2.1.2	Rarely using machines	More than 2.5 m in height, using bucket truck, crane, travelling cradle/maintenance platform, etc. – every three months
B2.1.3	Frequently manually	Less than 2.5 m in height or industrial climber, manually using suitable cleaning agents – every three months
B2.1.4	Frequently using machines	More than 2.5 m in height, using bucket truck, crane, travelling cradle/maintenance platform, etc. – every three months

B2.1 Cleaning	Unit	B2.1.1	B2.1.2	B2.1.3	B2.1.4
Global warming potential (GWP 100)	kg CO ₂ -equiv.	0.64	1.82	2.58	3.75
Ozone depletion potential (ODP)	kg R11-equiv.	1.24E-08	8.80E-08	4.97E-08	1.25E-07
Acidification potential (AP)	kg SO ₂ -equiv.	1.69E-03	0.01	6.77E-03	0.01
Eutrophication potential (EP)	kg PO4 ³⁻ -equiv.	2.94E-04	5.67E-04	1.18E-03	1.45E-03
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	1.47E-04	4.86E-04	5.87E-04	9.26E-04
Abiotic depletion potential (elements) (ADP _{el.})	kg Sb-equiv.	5.14E-06	5.25E-06	2.06E-05	2.07E-05
Abiotic depletion potential (fossil) (ADP _{fos})	MJ	7.91	21.27	31.63	44.99
Use of resources					
Use of renewable primary energy - excluding renew- able primary energy resources used as raw materials	MJ	1.04	4.60	4.18	7.73
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-
Total use of renewable primary energy resources (primary energy and renewable primary energy re- sources used as raw materials) (energy + material use)	MJ	1.04	4.60	4.18	7.73
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ	10.65	32.34	42.61	64.29
Use of non-renewable primary energy resources used as raw material (material use)	MJ	-	-	-	-
Total use of non-renewable primary energy resources (primary energy and non-renewable primary energy resources used as raw materials) (energy + material use)	MJ	10.65	32.34	42.61	64.29
Use of secondary materials	kg	-	-	-	-
Use of renewable secondary fuels	MJ	-	-	-	-
Use of non-renewable secondary fuels	MJ	-	-	-	-
Use of net fresh water	m ³	1.37	7.03	5.46	11.13
	· · · · · · · · · · · · · · · · · · ·				

Page 24

B2.1 Cleaning	Unit	B2.1.1	B2.1.2	B2.1.3	B2.1.4
Waste categories					
Hazardous waste disposed	kg	-	-	-	-
Non hazardous waste disposed	kg	2.18	7.20	8.73	13.80
Radioactive waste disposed	kg	8.42E-04	3.8E-03	3.3E-03	6.3E-03
Output material flows					
Components for re-use	kg	-	-	-	-
Materials for recycling	kg	-	-	-	-
Materials for energy recovery	kg	-	-	-	-
Exported energy	MJ	-	-	-	-

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

B2.2 Maintenance

No.	Scenario	Description
B2.2.1	Low use (e. g. residential construction)	Functional check every two years, visual inspec- tion, lubrication/greasing of hardware, check for damage and, if necessary, maintenance
B2.2.2	Normal use (e. g. office or public buildings)	Annual cleaning and lubrication/greasing of hardware, check for damage and, if necessary, maintenance
B2.2.3	Heavy use (e. g. schools and hotels)	Every six months cleaning and lubrication/greasing of hardware, check for damage and, if necessary, maintenance

Unit	B2.2.1	B2.2.2	B2.2.3
kg CO ₂ -equiv.	0.13	0.26	0.52
kg R11-equiv.	7.84E-10	1.57E-09	3.13E-09
kg SO ₂ -equiv.	7.56E-04	1.51E-03	3.02E-03
kg PO4 ³⁻ -equiv.	3.60E-05	7.20E-05	1.44E-04
kg C ₂ H ₄ -equiv.	1.03E-04	2.06E-04	4.13E-04
kg Sb-equiv.	1.50E-08	3.00E-08	6.00E-08
MJ	6.44	12.89	25.78
MJ	0.03	0.07	0.14
MJ	-	-	-
MJ	0.03	0.07	0.14
MJ	7.00	14.01	28.01
MJ	-	-	-
MJ	7.00	14.01	28.01
kg	-	-	-
MJ	4.08E-05	2.73E-05	1.09E-04
MJ	4.30E-04	2.85E-04	1.14E-03
m ³	0.05	0.10	0.20
	kg CO ₂ -equiv. kg R11-equiv. kg SO ₂ -equiv. kg PO ₄ ³ -equiv. kg Sb-equiv. kg Sb-equiv. MJ MJ	kg CO ₂ -equiv. 0.13 kg R11-equiv. 7.84E-10 kg SO ₂ -equiv. 7.56E-04 kg PO ₄ ³⁻ equiv. 3.60E-05 kg C ₂ H ₄ -equiv. 1.03E-04 kg Sb-equiv. 1.50E-08 MJ 6.44 MJ - MJ - MJ 0.03 MJ - MJ 0.03 MJ - MJ -	kg CO ₂ -equiv. 0.13 0.26 kg R11-equiv. 7.84E-10 1.57E-09 kg SO ₂ -equiv. 7.56E-04 1.51E-03 kg PO ₄ ³ -equiv. 3.60E-05 7.20E-05 kg C ₂ H ₄ -equiv. 1.03E-04 2.06E-04 kg Sb-equiv. 1.50E-08 3.00E-08 MJ 6.44 12.89 MJ 0.03 0.07 MJ - - MJ 0.03 0.07 MJ - - MJ 0.03 0.07 MJ - - MJ 7.00 14.01 MJ - - MJ 7.00 14.01 MJ - - MJ 7.00 14.01 MJ 7.00 14.01 Kg - - MJ 7.00 14.01 Kg - - MJ 4.08E-05 2.73E-05 MJ 4.

Date created: 01 November 2012 Next revision: 01 November 2017

B2.2 Maintenance	Unit	B2.2.1	B2.2.2	B2.2.3
Waste categories				
Hazardous waste disposed	kg	-	-	-
Non hazardous waste disposed	kg	0.09	0.18	0.36
Radioactive waste disposed	kg	2.62E-05	5.23E-05	1.05E-04
Output material flows				
Components for re-use	kg	-	-	-
Materials for recycling	kg	-	-	-
Materials for energy recovery	kg	-	-	-
Exported energy	MJ	-	-	-

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

Date created: 01 November 2012 Next revision: 01 November 2017

B3 Repair

No.	Scenario	Description
B3.1	Normal use and heavy use	One replacement of hardware, seals/gaskets, glass incl. glazing gasket, if necessary, mainte-nance/repair

B3 Maintenance / Repair	Unit	B3.1
Global warming potential (GWP 100)	kg CO ₂ -equiv.	41.58
Ozone depletion potential (ODP)	kg R11-equiv.	6.67E-07
Acidification potential (AP)	kg SO ₂ -equiv.	0.30
Eutrophication potential (EP)	kg PO4 ³⁻ -equiv.	0.03
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	0.02
Abiotic depletion potential (elements) (ADP _{el.})	kg Sb-equiv.	1.44E-03
Abiotic depletion potential (fossil) (ADP $_{\rm fos}$)	MJ	639.62
Use of resources		
Use of renewable primary energy - exclud- ing renewable primary energy resources used as raw materials	MJ	28.77
Use of renewable primary energy re- sources used as raw material (material use)	MJ	-
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	-
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	696.00
Use of non-renewable primary energy resources used as raw material (material use)	MJ	-
Total use of non-renewable primary energy resources (primary energy and non- renewable primary energy resources used as raw materials) (energy + material use)	MJ	-
Use of secondary materials	kg	-
Use of renewable secondary fuels	MJ	-
Use of non-renewable secondary fuels	MJ	-
Use of net fresh water	m ³	34.02

Date created: 01 November 2012 Next revision: 01 November 2017

B3 Maintenance / Repair	Unit	B 3.1
Waste categories		
Hazardous waste disposed	kg	0.07
Non hazardous waste disposed	kg	111.00
Radioactive waste disposed	kg	0.02
Output material flows		
Components for re-use	kg	-
Materials for recycling	kg	-
Materials for energy recovery	kg	-
Exported energy	MJ	-

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

B4 Replacement

The service life of 50 years assumed here does not include door replacement, with the exception of the components listed in scenario B3.

B5 Modification/refurbishment

No modification/refurbishment of doors necessary when used as intended and appropriately.

Date created: 01 November 2012 Next revision: 01 November 2017

B6 Operational energy use

No.	Scenario	Description	
B6.1	Manually operated	No energy consumed during use	
B6.2	Power operated	per drive: 0.33 Wh; open and close once a day => 6 kWh / 50a	

B6 Operational energy use	Unit	B6.1	B6.2
Global warming potential (GWP 100)	kg CO ₂ -equiv.	-	2.83
Ozone depletion potential (ODP)	kg R11-equiv.	-	1.81E-07
Acidification potential (AP)	kg SO ₂ -equiv.	-	0.01
Eutrophication potential (EP)	kg PO ₄ ³⁻ - equiv.	-	6.53E-04
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	-	8.15E-04
Abiotic depletion potential (elements) (ADP _{el.})	kg Sb-equiv.	-	2.92E-07
Abiotic depletion potential (fossil) (ADP _{fos})	MJ	-	32.07
Use of resources			
Use of renewable primary energy - excluding renewable primary energy resources used as raw materials	MJ	-	8.53
Use of renewable primary energy resources used as raw material (material use)	MJ	-	-
Total use of renewable primary energy re- sources (primary energy and renewable primary energy resources used as raw mate- rials) (energy + material use)	MJ	-	8.53
Use of non-renewable primary energy exclud- ing non-renewable primary energy resources used as raw materials	MJ	-	52.40
Use of non-renewable primary energy re- sources used as raw material (material use)	MJ	-	-
Total use of non-renewable primary energy resources (primary energy and non- renewable primary energy resources used as raw materials) (energy + material use)	MJ	-	52.40
Use of secondary materials	kg	-	-
Use of renewable secondary fuels	MJ	-	9.09E-04
Use of non-renewable secondary fuels	MJ	-	9.52E-03
Use of net fresh water	m ³	-	13.60

Date created: 01 November 2012 Next revision: 01 November 2017

B6 Operational energy use	Unit	B6.1	B6.2
Waste categories			
Hazardous waste disposed	kg	-	-
Non hazardous waste disposed	kg	-	22.20
Radioactive waste disposed	kg	-	5.95E-03
Output material flows			
Components for re-use	kg	-	-
Materials for recycling	kg	-	-
Materials for energy recovery	kg	-	-
Exported energy	MJ	-	-
NATE 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

B7 Operational water use

No water consumption when used as intended. Water consumption for cleaning is specified in Section B2.1.

C1 De-construction

No.	Scenario	Description	
C1.1	Dismantling	95 % de-construction of steel doors	
		The energy consumed in de-construction is negligible.	

Date created: 01 November 2012 Next revision: 01 November 2017

C2 Transport e.g. to collection point or disposal/landfill site

No.	Scenario	Description
C2.1	Transport	Transport to collection point with 7.5 t truck, capacity fully used, distance 50 km, from collection point to recycling plant with 40 t truck, capacity fully used (across Germany) approx. 150 km distance

Average weight per m² steel door: 48.5 kg

C2 Transport e. g. to collection point or disposal/landfill site	Unit	C2.1
Global warming potential (GWP 100)	kg CO ₂ -equiv.	0.40
Ozone depletion potential (ODP)	kg R11-equiv.	1.48E-10
Acidification potential (AP)	kg SO ₂ -equiv.	1.73E-03
Eutrophication potential (EP)	kg PO4 ³⁻ -equiv.	3.97E-04
Photochemical ozone creation potential (POCP)	kg C ₂ H ₄ -equiv.	-
Abiotic depletion potential (elements) (AD- $\ensuremath{P_{\text{el.}}}\xspace$	kg Sb-equiv.	1.58E-08
Abiotic depletion potential (fossil) (ADP _{fos})	MJ	5.53
Use of resources		
Use of renewable primary energy - exclud- ing renewable primary energy resources used as raw materials	MJ	0.22
Use of renewable primary energy resources used as raw material (material use)	MJ	-
Total use of renewable primary energy resources (primary energy and renewable primary energy resources used as raw materials) (energy + material use)	MJ	-
Use of non-renewable primary energy ex- cluding non-renewable primary energy resources used as raw materials	MJ	5.95
Use of non-renewable primary energy re- sources used as raw material (material use)	MJ	-
Total use of non-renewable primary energy resources (primary energy and non- renewable primary energy resources used as raw materials) (energy + material use)	MJ	-
Use of secondary materials	kg	-
Use of renewable secondary fuels	MJ	-
Use of non-renewable secondary fuels	MJ	-
Use of net fresh water	m ³	0.02

C2 Transport e. g. to collection point or disposal/landfill site	Unit	C2.1
Waste categories		
Hazardous waste disposed	kg	-
Non hazardous waste disposed	kg	0.03
Radioactive waste disposed	kg	1.19E-05
Output material flows		C2
Components for re-use	kg	-
Components for re-use Materials for recycling	kg kg	-
· · · · · · · · · · · · · · · · · · ·		-
Materials for recycling	kg	

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

C3 Waste management

No.	Scenario	Description
C3.1	Dismantling and recycling	De-construction of glazing 90 %, recycling of steel 98 %, recycling of other metals 90 %, residual fractions to waste incinerator 90 %

C4 Disposal

No.	Scenario	Description
C4.1	Disposal	Non-recordable amounts and losses within the re-use/ recy- cling chain (C1 and C3) are modelled as "disposed".

D Benefits and loads beyond the system boundaries

No.	Scenario	Description
D	Recycling potential	Steel scrap from C3.1 excluding scrap used in A3 replaces 100 % of steel
		Approx. 98% of aluminium is recycled.
		Approx. 95% of glass is recycled.
		Benefits credited from waste incinerator: electricity re- places European electricity mix, thermal energy replaces thermal energy from natural gas.

Imprint

Programme operator

ift Rosenheim GmbH

Theodor-Gietl-Str. 7-9 D-83026 Rosenheim Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261290 Email: info@ift-rosenheim.de www.ift-rosenheim.de

Supported by

 Verband Fenster + Fassade (Window + Facade Association) AK Stahl und Edelstahl (working group steel and stainless steel)
 Walter Kolb-Straße 1-7
 D- 60594 Frankfurt am Main

with financial support from

- Forster Rohr- & Profiltechnik AG, CH-9320 Arbon
- Jansen AG, CH-9463 Oberriet SG
- RP Technik GmbH Profilsysteme, D-59199 Boenen

Notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (**ift** Rosenheim) and specifically on **ift**-Richtlinie NA-01/1 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen (Guideline NA.01/1 – Guidance on the Preparation of Type III Environmental Product Declarations).

The publication and all of its parts are protected by copyright. Any utilisation outside the confined limits of the copyright provisions is not permitted without the consent of the publishers and is punishable. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Layout

ift Rosenheim GmbH

© ift Rosenheim, 2013

ift Rosenheim GmbH Theodor Gietl Straße 7-9 D-83026 Rosenheim Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 Email: info@ift-rosenheim.de www.ift-rosenheim.de